A Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem

نویسندگان

  • Musa Çakir
  • Gabil M. Amiraliyev
چکیده

The purpose of this paper is to present a uniform finite difference method for numerical solution of nonlinear singularly perturbed convection-diffusion problem with nonlocal and third type boundary conditions. The numerical method is constructed on piecewise uniform Shishkin type mesh. The method is shown to be convergent, uniformly in the diffusion parameter ε, of first order in the discrete maximum norm. Some numerical experiments illustrate in practice the result of convergence proved theoretically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Boundary Value Technique for Finding Numerical Solution to Boundary Value Problems for Third Order Singularly Perturbed Ordinary Differential Equations

A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singularly perturbed ODE subject to boundary conditions. In order to solve this system, a computational ...

متن کامل

A Finite Difference Technique for Singularly Perturbed Two-Point Boundary value Problem using Deviating Argument

In this paper, we have presented a finite difference technique to solve singularly perturbed two-point boundary value problem using deviating argument. We have replaced the given second order boundary value problem by an asymptotically equivalent first order differential equation with deviating argument. We have applied a fourth order finite difference approximation for the first derivative and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010